Molecular cloning of vacuolar H(+)-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean.

نویسندگان

  • Y Nakanishi
  • M Maeshima
چکیده

Vacuolar proton-translocating inorganic pyrophosphatase and H(+)-ATPase acidify the vacuoles and power the vacuolar secondary active transport systems in plants. Developmental changes in the transcription of the pyrophosphatase in growing hypocotyls of mung bean (Vigna radiata) were investigated. The cDNA clone for the mung bean enzyme contains an uninterrupted open reading frame of 2298 bp, coding for a polypeptide of 766 amino acids. Hypocotyls were divided into elongating and mature regions. RNA analysis revealed that the transcript level of the pyrophosphatase was high in the elongating region of the 3-d-old hypocotyl but was extremely low in the mature region of the 5-d-old hypocotyl. The level of transcript of the 68-kD subunit of H(+)-ATPase also decreased after cell maturation. In the elongating region, the proton-pumping activity of pyrophosphatase on the basis of membrane protein was 3 times higher than that of H(+)-ATPase. After cell maturation, the pyrophosphatase activity decreased to 30% of that in the elongating region. The decline in the pyrophosphatase activity was in parallel with a decrease in the enzyme protein content. These findings indicate that the level of the pyrophosphatase, a main vacuolar proton pump in growing cells, is negatively regulated after cell maturation at the transcriptional level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure.

Vacuolar H+-pyrophosphatase (H+-PPase) from etiolated hypocotyls of mung bean (Vigna radiata L.) is a homodimer with a molecular mass of 145 kDa. The vacuolar H+-PPase was subjected to high hydrostatic pressure to investigate its structure and function. The inhibition of H+-PPase activity by high hydrostatic pressure has a pressure-, time- and protein-concentration-dependent manner. The Vmax va...

متن کامل

Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings.

Endoplasmic reticulum (ER)-enriched vesicles from etiolated hypocotyls of mung bean seedlings (Vigna radiata) were successfully isolated using Ficoll gradient and two-phase (polyethylene glycol-dextran) partition. The ER-enriched vesicles contained inorganic pyrophosphate (PPi) hydrolysis and its associated proton translocating activities. Antiserum prepared against vacuolar H+-pyrophosphatase ...

متن کامل

Localization of a carboxylic residue possibly involved in the inhibition of vacuolar H+-pyrophosphatase by N, N'-dicyclohexylcarbodi-imide.

A vacuolar H(+)-pyrophosphatase (EC 3.6.1.1) that catalyses PP(i) hydrolysis and the electrogenic translocation of protons from the cytosol to the vacuole lumen, was purified from etiolated hypocotyls of mung bean seedlings (Vigna radiata L.). Group-specific modification was used to identify a carboxylic residue involved in the inhibition of vacuolar H(+)-pyrophosphatase. Carbodi-imides, such a...

متن کامل

Partial characterization of H-translocating inorganic pyrophosphatase from 3 citrus varieties differing in vacuolar pH.

Vacuolar pyrophosphatase (V-PPase) from juice cells of 3 citrus varieties (differing in their vacuolar pH) were partially characterized using purified tonoplast vesicles. Total V-PPase activity was highest in vesicle samples from sweet limes with vacuolar pH of 5.0, while samples from acid limes (with lowest vacuolar pH of 2.0) had the minimal total V-PPase activity. Samples from 'Valencia' ora...

متن کامل

An investigation of bisphosphonate inhibition of a vacuolar proton-pumping pyrophosphatase.

We report the results of a three-dimensional quantitative structure-activity relationship (3D-QSAR)/comparative molecular field analysis (CoMFA) of the activity of 18 bisphosphonates and imidodiphosphate in the inhibition of a mung bean (Vigna radiata L.) vacuolar proton pumping pyrophosphatase (V/H(+)-PPase; EC 3.6.1.1). We find an experimental versus QSAR predicted pK(app)(i) R(2) value of 0....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 116 2  شماره 

صفحات  -

تاریخ انتشار 1998